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LINEAR THEORY OF IMPULSIVE VELOCITY CORRECTIONS
FOR SPACE MISSION GUIDANCE

By Luigi S. Cicolani
Ames Research Center

SUMMARY

One aspect of midcourse guidance is the determination of the guidance
correction, usually specified by an equation that gives the required velocity
change as a function of the current state of the vehicle. With the assumptions
that impulsive velocity corrections are made and that the equations of motion
can be linearized sbout a reference orbit, the required midcourse velocity
correction will be a linear function of the deviation of the vehicle state
from the reference state.

Such linear guidance equations form a particularly simple class which is
analyzed in this paper from the viewpoints of linear vector spaces and the
theory of linear equations. Existence conditions and two formulations of the
guidance equation from the mission constraints are given. Properties of form
and time -invariant properties of the guidance equations and relations among
the basic notions of the theory are also discussed. Finally, a number of
examples from the recent literature are examined.

INTRODUCTION

A mission must satisfy certain objectives which, in turn, specify con-
straints on the vehicle's orbit. The launch system attempts to place the
vehicle on a reference orbit that satisfies the constraints, but misses this
objective slightly. For lunar and interplanetary missions the injection errors
will usually be unacceptable for mission success and a midcourse navigation
and guidsnce system and one or more midcourse corrections will be reqguired.
The navigation system estimates the vehicle state from observations of stars,
planets, or the vehicle, and the vehicle guidance system then attempts to cor-
rect to a satisfactory orbit (one which meets the mission constraints on
orbital motion) by means of a change of velocity. Because the actual state is
imperfectly known and the correction imperfectly made, the vehicle is not yet
on a satisfactory orbit and further observations and corrections may be
necessary.

Only one element of the midcourse guidance and navigation process will be
examined here - the equation which gives the required wvelocity correction as a
function of current vehicle’ state.

In the study of midcourse guildance for the lunar and interplanetary
missions, it has frequently been adequate to assume that velocity corrections



are impulsive and departures from a reference orbit are sufficiently small to
allow the equations of motion to be linearized about the reference orbit. The
guidance equations that result from these assumptions give the velocity correc-
tion as a linear function of the deviation of the current vehicle state from
the reference state. Guidance equations of this type will be termed linear
impulsive guidance laws herein. A number of such guidance laws designed to
satisfy various mission constraints have been reported (e.g., refs. 1-5). All
of these examples of guidance laws show some similarity of form, suggesting
that they are mathematically related. It is the object of this paper to deter-
mine the general properties and logical structure of the class of linear
impulsive guidance laws.

The analysis adopts two approaches; in the first we consider the state
space. The midcourse velocity correction is an attempt to correct some arbi-
trary state to a satisfactory state, that is, to a state which defines an orbit
that satisfies the mission constraints. Linear impulsive guidance laws occur
when the satisfactory states are, collectively, certain types of subspaces of
the state space, and the guidance law can be formulated from any basis of the
satisfactory states. Further, such guidance laws have properties of form which
depend on the dimension of the set of satisfactory states and are invariant
with time. The set of satisfactory states is, in turn, defined by the mission
constraints on orbital motion, and a basis of the satisfactory states can be
generated by a sufficient number of derivatives of the state, evaluated on the
reference orbits, with respect to appropriate orbital parameters.

The second approach utilizes the mission constraints directly; from the
linearized relation between the constraint parameters and the current state,
the general solution for the velocity correction which satisfies the con-
straints can be obtained. This construction gives the guldance law from deriv-
atives of the constraint parameters with respect to the Cartesian components
of the current vehicle state.

Finally, the theory is illustrated with an examination of the recent
literature on lunar and interplanetary midcourse guidance.

The first construction is carried out from the viewpoint of linear vector
spaces, but only elementary principles from that subject are used (cf. ref. 6),
A convenient notion in the second approach is the pseudo-inverse of a matrix
(refs. 7, 8). The two constructions give equivalent solutions for the guidance
laws, although the application of the second construction will usually reguire
less labor.

SYMBOLS
A1) various matrices

Alts,t1) transition matrix, relating the deviation state at tz to the
deviation at t1



Aj(tZ:tl)
AZ

B(t)
B1(tz,t1),
Bo(tz,t1), B
D

Fa(t)

a(t), G1(t),
Go(t)
I

N(t)

i}

submatrices of A(ts,t1), J =1, « . «, &4
azimith angle

various matrices

matrices relating states in S(ts) to states in S(tq)

declination angle
matrix relating state deviations to deviations in orbital

parameters

guidance law matrix and its submatrices

identity matrix

state space; set of all deviations of position and velocity
from a reference position and velocity at time, t

unit vector normal to orbital plane
m-tuple of independent orbital parameters (p,, . - -, DPp)
right ascension

set of all position deviations occupied by the satisfactory
orbits at time, %

position vector

set of satisfactory deviation states
element of 8(t)

time

reference arrival time

unit vector

matrices appearing in construction of guidance laws

velocity vector; also used as a unit vector



&

X(t)

x(t)

Q1,

B1,B2
5( )

the theory.

vector appearing in construction of guidance law, otherwise
used as a unit vector

vehicle position and wvelocity, in Cartesian component, rela-
tive to a central body

state vector; six Cartesian components of position and veloc-
ity deviations from a reference orbit; sometimes written

(&)

earth's rotation rate

specified values of parameters p;, . . ., Py ©Of reference
orbit

constants relating entry flight time and entry range angle
small deviation from reference value of ( )

gravitational constant of central body

entry range angle

matrices occurring in landing site guidance law

vectors

transpose

set of objects defined by contents of { }

DEFINITTONS

It is useful to begin with definitions of the primitive notions underlying

The satisfactory orbits are all those that meet the mission constraints on

vehicle motion.

The reference orbit is one member of the set of satisfactory

orbits; the choice of reference orbit may be based on one or more factors such
as fuel consumption, flight time, etc.

Since the launch system attempts to inject the vehicle on the reference
orbit, it is frequently adequate to assume that the orbits of interest in the



midcourse guidance problem are sufficiently close to the reference orbit to
allow the equations of motion to be linearized about the reference. With this
assumption, the theory need consider only deviations from the reference state.

The state deviation, x(t), refers to a column of the six Cartesian compo-
nents of position and velocity deviations from the reference state at time, t.
It will sometimes be replaced by the convenient form (Sf, 8¥), in which the
position and velocity deviations are stated explicitly. There is no loss of
generality in using position and velocity deviations to define the state since
these are related to the deviations of any other six independent parameters
by means of appropriate transformations. Further, this definition of the
deviation state is especially suited to the development.

The state deviations at two different times on an orbit are related by

x(t2) = A(tz,t1)x(t1) (1)

where A(ts,t1) 1is the transition matrix obtained by linearizing the equations
of motion about the reference orbit. Its columns are derivatives of the state
coordinates at to with respect to the state coordinates at t1 evaluated on
the reference orbit.

Certain sets of states pertinent to the discussion are next defined.

The set of all deviation states at time +t forms a six-dimensional linear
vector space N(t) called the state space. Bach element of N(t), when added
to the reference state at +t, defines an orbit. The state space N(t) is
everywhere equivalent to the set of all gextuples and, hence, includes some
arbitrarily large deviations from the reference state. Although equation (l)
inadequately represents the actual motion when the deviations are large, the
theory is consistent based on the model of equation (1). In a practical con-
text this means the linearized theory may be applied only in guidance problems
in which equation (1) adequately describes the orbits that occur. BSuch a
restriction is, of course, implicit in the use of linearized equations of
motion.

The set of satisfactory states S(t) at time +t 1is the set of all those
deviation states in N(t) which define satisfactory orbits. The guildance
process is an attempt to correct an arbitrary state in N(t) to a state in
S(t). The set of orbits defined by S(t) is fixed at all times; no new
satisfactory orbits are added or others deleted as the mission proceeds.

Lastly, the set R(t) is the set of position deviations occupied at time
t by the satisfactory orbits. It is evident that any arbitrary state (&F,5V)
can be corrected to a state in S(t) by means of an impulsive velocity cor-
rection only if ®F is in R(%).



ANATYSTS

Linear Impulsive Guidance Laws

In midcourse guidance of space missions, it has frequently been assumed
that the velocity corrections are impulsive, and that the orbits of interest
can be described by linearized equations of motion. With these assumptions,
the relationship between the state deviation and the velocity correction,
that is, the guidance law, is a linear one and is defined over the entire
state space. The class of guidance laws with these general properties may be
termed linear impulsive guidance laws.

One approach to the analysis is axiomatic; we begin with a definition of
the class of linear impulsive guidance laws in terms of the elementary proper-
ties 1t should possess, and then derive other properties of this class as a
consequence of the definition.

Definition.~ A linear impulsive guidance law is a rule which specifies a
unique instantaneous change of velocity, linearly related to the present state
deviation, such that the final state is satisfactory. ©Such a correction is
specified for every state; if the present state is satisfactory, then no cor-
rection is made.

Suppose such a guldance law is defined at time t, and x(t) is any state
deviation. The change of state specified by the guidance law i1s linearly
related to x(t) for every x(t):

ox = G(t)x(t)

The 6 X 6 matrix G(t) will be termed the guidance law matrix at +t. Since
only the velocity is to be changed, then G(t) has the form

0 0]
G(t) =
Gi(t)  Ga(t)

where G(t) *has been partitioned into 3 X 3 submatrices. The velocity correc-
tion can also be written as

AT = G1(t)87(t) + Go(t)o7(t)

After a correction has been made, the final state is

xp(t) = [T + G(t)Ix(t)
If the present state is satisfactory, then no correction is required; that is,

¢(t)x(t) =0



when x(t) is a satisfactory state. Since [I + G(t)]x(t) is a satisfactory
state for any x(t), the guidance law matrix satisfies the equation

G(e)[T +a(t)]l =0

The partitioned form of G(t) can be inserted to reduce the previous equation
to

-Go(t)G1(t)

-G2(t)

u

G1(t)

Go(t)

(2)

i

The guidance law matrix associated with linear impulsive corrections satisfies
equations (2), but not all matrices which satisfy equations (2) are necessarily
guidance law matrices. The next section will determine existence conditions
and the guidance law matrix in terms of various features of the set of satis-
factory states.

Existence Conditions and the General Guidance Law Matrix

This section explores the connections between the guidance law matrix and
the set of satisfactory states. It is found that linear impulsive guidance laws
cccur when the satisfactory states are certain types of subspaces of the state
space, and that the guidance law matrix can be given in terms of appropriate
states from S(t). Some general properties of the guidance law matrix are
given and, in particular, it is found that the submatrix Go(t) can have only
certain mathematical forms.

The satisfactory states.- Suppose the guidance law exists and a(t) is
its matrix. Then from the definition of the guidance law, the states in
[T + a(t)IN(t) are satisfactory and also

a(t)x(t) =0

for any state which is satisfactory. It follows easily that the converse of
these two statements is also true. Consequently, if G(t) exists, then the
satisfactory states can be defined from the guldance law matrix by either of
the following

S(t) = [T + a(t)In(t)

(3)

S(t) = {x(t) : a(t)x(t) = 0}

Necessary conditions for the existence of G(t).- The first of equa-

tion (3) states that if G(t) exists, then S(t) is the linear vector sub-
space of N(t) formed by the set of all linear combinations of the columns of
I+ G(t); that is, the columns of I + G(t) are satisfactory states and span
the subspace S(t). The dimension of S(t) is equal to the order of the
largest square nonsingular submatrix of I + G(t). In terms of its 3 X 3

submatrices




—

I 0
T+ 6(t) = (L)
G.(t) I + as(t)

and it is clear that the dimension of S(t) is at least 3.

Further, R(t), the set of positions occupied at + by the satisfactory
orbits is, equivalently, the set of all linear combinations of the position
elements of any set of states which span S(t). In particular, R(t) is given
by all linear combinations of the columns in the upper half of I + a(t) and
is therefore three-dimensional, since the upper left submatrix I in equa-
tion (U4) is nonsingular. These statements are collected in the following
necessary conditions for the existence of a linear impulsive guidance law

matrix.

Lemma 1: If G(t) exists, then S(t) is a linear vector subspace
of N(t) such that R(t) is three-dimensional.

Thus, s(t) 1is a three-, four-, or five-dimensional subspace of N(t).
The trivial case in which S(t) is six-dimensional need not be considered,
gince in this case every state in N(t) is satisfactory, and no correction is
ever made. That R(t) mst be three-dimensional is physically obvious, since
it guarantees that at least one satisfactory state exists corresponding to
every position deviation; and in any other case there will be position devia-
tions for which no satisfactory state exists and for which a correction is
therefore impossible.

The guidance law matrix.- The necessary conditions for existence given by
lemma 1 are also sufficient. The proof of this fundamental fact will follow
from lemma 2 and theorem 1 below. Lemma 2 is a formality; theorem 1 shows that
the guidance law matrix can be given from any basis of the satisfactory states
and will be useful in the later text.

Lemma 2: Let S(t) be an n-dimensional subspace of N(t) and let

S1 = (F1,¥1)y - « <5 Sp = (Tﬁ,ﬁh) be any basis of S(t). Then
R(t) is three-dimensional if and only if 3 < n < 6 and three of
the vectors Ti, . . ., I'n are independent.

A basis of a linear vector space is any set of linearly independent ele-
ments in the space which will generate every element in the space. The number
of elements in a basis is equal to the dimension of the space. Further, the
space can be generated as the set of all linear combinations of the basis ele-

ments. Thus, S(t) is the set of all linear combinations of s1, . . ., Sn»
and R(t), the set of all positions occupied by the satisfactory states, is
the set of all linear combinations of T3, . . ., ry. Hence, R(t) is three-
dimensional if and only if n 2 3 and three of the vectors T1, . . ., Tp

are independent.



Theorem 1: If S(t) is an n-dimensional subspace of N(t),
n=3,%4 5, and sy = (rl,vl), .« ., 8n = (Th,¥n) form a basis of
S(t) such that Ti, ¥s, Ts are 1ndependent(renumber the states

if necessary), then a linear impulsive guidance law exists and its
matrix is given as follows: Let W, V be the 3 X 3 matrices whose
columns are Ti1, To, Ta, and Vi, Ve, V3, respectively. Then

G1(t) = -Go(t)VW ™"
-I for n=3
Go(t) = - + Bl for n =k
I+ TET 4+ GoWe’  for no= 5

where (i) G(t) specifies the minimum velocity correction

(i1) @ 4is a unit vector in the direction of the (nonzero)
vector -1
Va - VW "7y

(iii) Ty, Wo are any orthonormal pair of wvectors in the plane
of the two (nonzero, independent) vectors

Vi o~ WOTs, 3= L, 5

The proof of theorem 1 is carried out in appendix A. Note that the matrix
W 1is nonsingular since its columns are assumed independent. The form of G(t)
is not the most general linear impulsive guidance law matrix when S(t) is
four- or five-dimensional but corresponds to the condition that the magnitude
of the wvelocity correction be minimized. The general result is noted in
appendix A but is not of interest here except in discussing the uniqueness of
the guidance law matrix.

In view of lemmas 1 and 2, if G(t) exists, then the conditions of
theorem 1 can always be satisfied; therefore, the guidance law matrix can
always be given in one of the forms of that theorem.

It should be noted in theorem 1 that guidance law matrices exhibit certain
properties of form which depend only on the dimensions of S(t). The submatrix
Gg(t) can have only certain mathematical forms. If we write

— =1 .
Wj='Vj—VW T, 3<j<n

then Gg(t) can be described as the reflection-projection matrix with pro-
Jection to the space orthogonal to the n-3 independent vectors w-:. An
alternate view is that the mission constraints are independent of the ﬁﬁ
components of the velocity deviation. Thus, Go(t)d8F¥ cancels out the part of
&V which is orthogonal to the Wﬁ and leaves unchanged the components of &V
along Wﬁ



Such a restriction on the form of Go(t) is expected in view of
equations(2). However, a larger class of matrices than the reflection-
projection matrices given in theorem 1 will satisfy equations(Q); the remaining
matrices do not reflect the condition that the velocity correction is to be
minimized. That is, since the mission constraints are independent of the Wﬁ
components of the final wvelocity deviation, then these components can be
changed arbitrarily without affecting the mission constraints, and the minimum
correction is the one that makes no change in these components.

Further, the submatrix G1(t) is restricted to the extent that the range
space of G.(t) is included in the range space of Go(t); that is, G.(t)oT
will lie in the space orthogonal to the W;. These properties are partly sum-
marized by the following singularities, which follow easily from theorem 1:

T T
TG(t) =T Ga(t) =Ga(t)TU=A7F . T=0 for n =L
T _T _
usGi(t) = ung(t) = Gg(t)uj =AV . ¥3=0 j=1,2 for n=>5

Necessary and sufficient conditions for the existence of G(t).- Finally,
lemma 2 and theorem 1 together state the converse of lemma 1; that is, if s(t)
is a linear vector subspace of N(t) such that R(t) is three-dimensional,
then G(t) exists. These results combine to give a necessary and sufficient
condition for the existence of the guidance law.

Theorem 2: A linear impulsive guidance law exists at t 1if and only
if 8(t) is a linear vector subspace of N(t) such that R(t) is
three-dimensional.

Uniqueness of the guidance law matrix.- The uniqueness of the guidance law
matrix corresponding to a given set of satisfactory states is investigated in
gppendix B. If G(t) is assumed to exist, the results state that G(t) 1is
unique, provided S(t) 1is three-dimensional and is unique when S(t) 1is four-
or five-dimensional if the magnitude of the velocity correction is minimized.

To summarize the results of this section, a linear impulsive guidance law
occurs when S(t) is any three-, four-, five-, or, trivially, six-dimensional
subspace of N(t) such that there is at least one element of S(t) corre-
sponding to every position deviation. When this condition is satisfied and the
velocity correction is assumed to be minimized, then the guidance law matrix
is given uniquely by theorem 1 from any basis of s(t).

Invariant Properties and Propagation of the Guidance Law Matrix
Since the guidance law is of continuing interest throughout the mission,
this section will consider the propagation of the guidance matrix. We first

determine whether the properties discussed in the previous section are invariant
with time. It is found that S(t) remains a linear vector space of invariant

10



dimension throughout the mission. Hence, the form of Go(t) is also invariant
for all times when G(t) exists. Secondly, if G(to), the guidance law at the
start of the mission, is assumed to exist, the relation between G(t) and

G(to) can be determined for those times at which G(t) exists.

Invariant properties.- The set of satisfactory orbits is fixed throughout
the mission. If x(ty,) is on a satisfactory orbit, then from eguation (1) the
corresponding satisfactory state on the same orbit at time t 1is

x(t) = A(t,t0)x(tc)

If G(to) exists, then S(t,) 1is a linear vector space. By taking the union
over all states in S(ty), we obtain ‘

S(t) = A(t,t0)8(t0) (5)

The state transition matrix A(t,to) is never singular (ref. l);l hence,

if G(ty) exits, then from equation (5), S(t) is everywhere a linear vector
space with the same dimension. Therefore, the form of Gg(t) and other
dimension-dependent properties of form noted in theorem 1 are also invariant
wherever the guidance law exists. Further, since S(t) is everywhere a linear
vector space then the existence conditions of theorem 2 are met if R(t) is
three-dimensiongl. It should be noted that there may be one or more times
during a mission at which this condition is not met. In summary,

Theorem 3: If G(t,) exists, then (i) 8(t) is everywhere a linear
vector space with time-invariant dimension, and (ii) G(t) exists
if and only if R(t) is a three-dimensionsal linear vector space.

Ixistence criteria.- In the following, G(to) is assumed to exist, and
the relation between G(t) and G(ty,) is obtained. It is first necessary to
give the existence condition in terms of G(to) and the transition matrix.

The transition matrix may be partitioned into its 3 X 3 submatrices:

Ar(tz,t1)  Az(tz,ta)
Alts,t1) = (6)
Ag(to,t1)  Aal(to,t1)

The satisfactory states at +t, from equations (3) and (5), can now be expressed
as '

B1i(t,to)  Aa(t,t5)[I + Gol(ty)]

s(t) = N(tg) (7)
Ba(t,to)  As(t,t0)[I + Go(ty)]

ATe A(t;to)A wére”éihguiar,-diéfinct states would exist at tp which
would generste identical states at t under free motion and, hence, distinct
orbits which become identical orbits.

11



The following notation has been adopted in equation (7)

Ba(t,t0) = Aalt,t0) + Az(t,t0)Ga(t0) ()
Ba(t,t0) = As(t,to) + Aa(t,t0)G1(t0)
The positions occupied by the satisfactory orbits at t form the linear
vector space given by
R(t) = {87(t) = B1(t,t0)8T(t0) + A2(t,t0) [T + Ga(to) 18%(t0) ;
87(to) ,0%(to) arbitrary} (9)

A necessary and sufficient condition for the existence of a(t) 1is that
R(t) %be three-dimensional; that is, at least one satisfactory state exists
corresponding to every position deviation at t. The matrix Go(to) can have
only certain forms as given in theorem 1 of the preceding section. These forms
depend only on the dimension of S(t)

-1 for n =3

iy L

Il

Go(te) = (- + for n

5

I

-I + 'l-:l-lﬁ-lT + ﬁ-gﬁgT for n

where n is the dimension of S(t) and U, W1, Uz are the unit vectors of
theorem 1.

Existence criteria are obtained by substituting these forms of Gg(to)
into equation (9) and determining the conditions for which R(t) is three-
dimensional. Equation (9) gives R(t) as the set of all linear combinations
of the six columns of Bi(t,t,) and Ax(t,t,)[T + Go(ty)]; hence, R(t) is
three-dimensional when three of the six columns are independent. The results
are readily obtained and are surmarized by the following corollary.

Corollary 1: If G(ty) exists and dim[S(t)] = n, n =3, 4, 5 then
G(t) exists if and only if one of the following is satisfied:

(a) Bi(t,t,) is nonsingular

(b) n =1L, Bi(t,ty) has rank 2, and As(t,t0)T is not in the
range space of Bi(t,tgy)

(¢) n =5, Bi(t,to) has rank 2, and one of the vectors As(t,t,)u1,
Ao(t,t0)T2 is not in the range space of Bi(t,t,)

(a) n =5, Bi(t,ts) has rank 1, and the two vectors, As(t,to)Ts,

As(t,to)T2 are neither in the range space of Bi(t,t,) nor
dependent

12



A propagation formula.- The guidance law matrix G(t) exists as specified
in corollary 1. When G(t) exists, it can be related to G(ty) through the
transition matrix. This relation is obtained below for case (a) of corollary 1
in which Ba(t,to) is nonsingular. The remaining cases are neglected here
because the results have not been obtained in a useful form.

Equation (7) gives S(t) as the set of all linear combinations of the
columns of a matrix. To obtain the propagation formila, substitute the appro-
priate form of Ga(t,) according to the dimension of S(t) into the matrix
in equation (7). If n is the dimension of 8(t), the resulting matrix must
have n independent columns. For example, if n = 4 the matrix becomes

~_T
Bi(t,to)  Ax(t,to)ud

T
Bo(t,to)  Aalt,to)ud

There is exactly one independent column among the right-hand three columms and
this together with the left-hand three columns provides four independent states
in 8(t). If, next, Bl(t,to) is assumed nonsingular then the conditions of
theorem 1 are met; the matrix above provides four independent states in S(t)
of which the first three provide three independent position deviations. Con-
sequently, the guidance law matrix follows immediately from theorem 1. TFirst,
define the matrix

B = Au(t,t5) - Balt,t0)BIH(t,10)A(t,t0) (10a)

This matrix is nonsingular (appendix ¢), and if Ag(t,to) is also nonsingular,
B can be reduced to (appendix C):

B = [8:(t,50) "1 BIT(t,b0)Aa(t,bs) (10b)

Finally, the guidance law matrix itself is given by the following corollary to
theorems 1 and 3:

Corollary 2: If G(t,) exists and Bi(t,t,) is nonsingular, then
G(t) exists and is given as follows:

Let 5(t) be n-dimensional; n = 3, 4, 5. Then

G1(t) = -Ga2(t)Ba(t,t5)BI%(t,t0)
-I for n = 3
Ga(t) = { I + T(HT (%) for n =l
T+ T(8)T(E) + Te(t)Tat(t) for n=5

13



where (i) the form of Go(t) assumes that the velocity correction is
minimized when n =4, 5

(ii) For n = 4, @(t) is a unit vector in the direction of
Bu(to)

(iii) For n = 5, U1(t), Us(t) are any orthonormal pair of
vectors in the plane of the two (independent)2 vectors
Bu1(to), Buz(to)

(iv) T(tg), T1(ts), Taol(ty) are the unit vectors associated
o) o} 0
with Ga(ty,) in theorem 1 and Bi(t,to), Ba(t,ts), 3B
are matrices defined in equations (8) and (10

Derivation of Guidance Laws From Constraints

The preceding analysis began with the primitive notion of satisfactory
states and a definition of the linear impulsive guidance law and then obtained
the theoretical results as consequences of the definition. In practice, guid-
ance laws are obtained by applying constraints to the vehicle motion in order
to meet mission requirements. This process is sufficiently general that the
notion of guidance constraints must play an important role in the theory.

In this section the connection of guidance constraints with the preceding
theory is examined, and a uniform method for deriving linear impulsive guidance
law matrices from the guidance constraints 1s given.

Guidance constraints.- The guidance constraints are a number of restric-
tions on the vehiecle motion to be satisfied in order to meet the mission
requirements. The guldance law is itself a statement of these constraints.

In equation (3),
s(t) = {x(t): a(t)x(t) = 0} (3)

That is, those states which satisfy the mission requirements are given by equa-
tion (3) as all states for which the linear function G(t)x(t) 1is zero. The
munber of independent scalar constraints imposed by the guidance law on the
vehicle motion is then the number of linearly independent equations in

a(t)x(t) = 0

or, equivalently, the rank of G(t). It is readily determined from equations(2)
that the rank of G(t) 1is equal to the rank of Gg(t), which, from theorem 1,
is specified by the dimension of S(t).

Lemma 3: TLet G(t) be the matrix of a linear impulsive guidance law
defined at +t. Then 8(t) is an n-dimensional subspace of N(t),
n=3, 4, 5, and the guidance law imposes 6-n independent scalar
constraints on the state.

2gince ui,us are inﬁepehdenf and B is nbnsinéﬁléi, Buy, Bﬁ% are
independent.
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It may be noted that a linear impulsive guidance law cannot impose more
than three constraints. Further, since n 1is invariant throughout the mission
(theorem 3), the number of constraints imposed by G(t) is also invariant.

Derivation of the guidance law from constraints.- In practice, guidance
laws are obtalned.by applying constraints to the vehicle moticon in order to
satisfy the mission. This process is generally applicable and, with suitable
restrictions, leads directly to linear impulsive guidance laws.

Let
T = (le RN Ps) (ll)

be any six independent scalar parameters of orbital motion. This means that
the set of all p, {p}, is in one-to-one correspondence with the set of all
orbits. The six Cartesian coordinates of position and velocity at some time

t, X(t), are often used, but, in general, the parameters may be chosen for
convenience. In this case, X(t) can always be given in terms of p by virtue
of their one-to-one correspondence with the set of all orbits:

X(t) = F(py, - « -, Pgs t) (12)

The guidance constraints are a number of restrictions on the vehicle
motion generated by the mission requirements. Suppose the guidance constraints
have been expressed as constraints on independent orbital parameters and that
these are included among the six parameters of (ll); in particular, suppose
the mission requirements are met by all orbits for which the parameters
Ppe1s - -+ +» Pgy n < 6, have the specified values apyq, - - -, Ga- (If
n = 6 then no parameter is specified, and we have the trivial case in which
all ofblts satisfy the guidance constraints.) The satisfactory orbits are now
defined by

pg = (pl, -« oy Pps Gpp1s - - es O8)3 Py, - - 5 Py arbitrary
(13)

A reference orbit is chosen from among the pg of equation (13). The remain-
ing orbits can be referred to the reference orbit by:

8p = P = Prop = (BDy, « + +, BDy) (14)

and the guidance constraints become
8P4, = - - - = 0p, =0 (15)

Assume, next, that the orbits of interest are sufficiently near the
reference orbit that they may be adequately represented by the first two terms
of a Taylor series expansion of equation (12) about the reference orbit. The
deviation state at any time can then be expressed as:

15



a 2

x(t) = x(t) - X(¢) o = P “Fe 1 ap = Fu(v)ep (16)
IV(t - ow(t)
op dpg

The matrix, Fl(t), is nonsingular by virtue of the one-to-one correspondence of
N(t) and {&p} with the set of all (linearized) orbits and, hence, with each
other. That is, the columns of Fi(t) are six independent states in N(t).
The satisfactory states are all those deviation states that satisfy (15):

o B _ 3
or(e) |, )| /o
op dp 1
s(t) =¢ x(t) = * n 3 BDy, - v -y B ? (17)
dV(t) . . . OW(t) - arbitrary
[ Bpl apn_J I,
. J

Equation (17) gives S(t) as the n-dimensional linear vector subspace of
N(t) for which the n states

a (R B ] o

are a basis. The existence conditions of theorem 2 for a linear impulsive
guidance law can now be satisfied if and only if R(t) 1s three-dimensional.
This occurs if and only if (i) n is not less than 3, and (ii) three of the

vectors
or(t
—a-é——l, k=1, . . ., n
k

are independent. Assuming that these conditions are met, then the conditions
of theorem 1 are fully satisfied by the n states of equation (18) and the
guidance law matrix can now be written directly from theorem 1. The following
theorem gives the results:

Theorem 4: Tet pT = (pl, .+ .5 Pg) be six independent scalar
parameters of orbital motion; let Xo(t) be the state on a ref-
erence orbit, and let the equations relating X(t) to p be
linearized about the reference orbit:

« e . op
op, 9pg

() = [ai(t) ai(t)} .
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Then (i) a linear impulsive guidance law satisfying the constraints
3p3 =0 Jj=n+1l, .. .,6

exists i1f and only if n > 3 and

onk [Bi(t) L a?(t)] - 3

3p, Py

(ii) If the guidance law exists, then the guidance law matrix
which specifies the minimum velocity correction is given
as follows. Let OF/dpk; k = 1, 2, 3 be three independent
vectors (renumber the parameters if necessary) and define

d3r(t) OF(+) af(t)]
W =
() [ dp, OJp, OP5 |
_ [ow(t) o (t) BV(t)}
vis) = [ 9P, 5p2 Bps
then
G(t) = -Ga(t)V(t)w(t) ™"
(—I for n=3
Go(t) = -T + aﬁT for n = L
—I + Uils, 4 azﬁ:gT fOI‘ n = 5

where (i) all derivatives are evaluated on the reference orbit

(ii) for n = 4, T is a unit vector in the direction of

(5v/3p,) - vw-1(3%/3p,)

(iii) for n = 5, U1, Up are any orthonormal pair of vectors
in the plane of (BVVBpk) - VWr(or/Opy) s k= L4, 5

The results in theorem 4 parallel those of theorem 1 except that the guidance
law matrix is given in terms of appropriate derivatives of the state. The
derivatives appearing in equation (18) and in the guidance law matrix form a
basis of S(t), but the guidance law is unigue and independent of the basis of

that is used; that is, the derivatives appearing in the guidance law

matrix can be taken with respect to any n independent scalar parameters of
orbital motion which are also independent of the constraint parameters.

17



It may be noted that a linear impulsive guidance law does not occur if
more than three constraints are required as, for example, in the rendezvous
constraints [87(ty) = 0, &%(te) = O].

An Alternate Construction of Guidance Law From Constraints

Thus far, linear impulsive guidance laws have been treated by considering
the set of satisfactory states; theorem 1 shows that G(t) can be given from
any basis of S(t). To relate the guidance law to the guidance constraints,
according to the previous section, if there are nm (m < 3) independent guidance
constraints, then a basis of S(t) is given by derivatives of the state with
respect to any 6-m independent parameters which are also independent of the
constraint parameters. The guidance law matrix can then be formulated from
these derivatives.

An alternate construction of the guidance law matrix from the guidance
constraints is obtained by considering directly the conditions under which the
constraints can be satisfied. The resulting definition of the guidance law
will usually be simpler to apply than theorem L.

Let pT = (p,, - . -, pn) be m independent scalar parameters of orbital

motion related to the present state X(t) by

p = F[X(t)] (192)

and suppose that the guidance constraints are that p 1s the specified vector

PT": (O('l; e e O('m)

Choose a reference orbit Xo(t) which satisfies these constraints and assume
that the orbits of interest are sufficiently close to the reference orbit that
the parameters 7p may be approximated by the first two terms of a Taylor
series expansion of equation (l9a) about the reference orbit. Subtracting the
reference eguations from (l9a), obtailn

op = A(t)8T(t) + B(t)av(t) (19v)
Here, A(t), B(t) are m X 3 matrices in which the jth rows are the deriva-
tives, evaluated at the reference orbit, of pj with respect to the Cartesian
coordinates of position and velocity, respectively. ©Since the m parameters
of p are independent, then
rank [A B] = m (20)

The guidance constraints are

dp; =0 J=1, .. ., m (21)
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and we define the existence of a guidance correction which satisfies these
constraints as follows:

A guidance correction, AV, exists at t if for every deviation
state (87,5¥) there exists a AF which satisfies the m
independent equations:

0 = A(t)sT + B(t)(87V + AF) (22)

Existence conditions.- An existence condition for the guidance correction
is readily established.

Theorem 5: Eguation (22) has a solution (i.e., a guidance correction
exists at t) if and only if

rank (B) = m < 3

Proof - Equation (22) can be rewritten as:

B(t) A7 = -[A(t) B(t)1ex(t) (23)

where A, B are m X 3 matrices. We sgeek the conditions for which these m
inhomogeneous linear equations have a solution, AV, for arbitrary &x. The
Kronecker-Capelli theorem (ref. 6) states that equation (23) is compatible
(has at least one solution) if and only if the rank of B equals the rank of
the augmented matrix, B%, where the augmented matrix is formed by attaching
the m X 1 column

b = [A Blex

to the coefficient matrix, B; a _

B™ = [B Db]
Thus, the Kronecker-Capelli theorem is satisfied if and only if b 1is a linear
combination of the columns of B. But b can be any linear combination of the

columns of [A B] since 8&x 1is arbitrary; hence, the columns of [A B] are
required to be linear combinations of the columns of B. Thus,

rank (B) > rank [A B] = m
and, since the columns of B are contained in the columns of [A BJ,
rank (B) < rank [A B]
Thus, the Kronecker-Capelli theorem is satisfied if and only if

rank (B) = rank [A Bl = n (24)

Note that B is an m X 3 matrix whose maximum rank is minimm {m,3} and
equation (24) cannot be satisfied if m > 3.

The guidance law matrix.- Suppose that the guidance correction exists.
Then the general solution of equation (22) can be given directly from refer-
ence 7 (theorem 2, corollary 1);

AV = -BYasT - BfBov + ¥ (252)
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where BT indicates the pseudo-inverse® of B and the vector % is any
arbitrary vector orthogonal to the domain (row space) of B. Now, the first
two terms on the right-hand side of equation (25a) lie in the domain of Bj;

in fact, BB is the matrix which projects on to the (m-dimensional) domain of
B. Thus, z is orthogonal to the first two terms, and if we adopt the condi-
tion that % is to be chosen such that AV 1is a minimum, then Z will be
zero. The desired solution of equation (23) is then

AT = BYasT - BTBST (250)

The corresponding guldance law matrix can now be identified:

c¢.(t) = -BYA
Go(t) = -B'B

It is readily verified that equation (25b) satisfies the definition of a linear
impulsive guidance law. Further, that definition can be satisfied by more
general choices of % than Z = O, as noted in appendix A, but the general case
igs not of interest in this paper.

Thus far, it has been shown that if a guidance correction exists, a matrix
can be written for a linear impulsive guldance law. Conversely, if that matrix
can be written, then equation (23) has at least one solution for every devia-
tion state, ®x, and the guidance correction can be said to exist. In summary,

Theorem 6: Let pl = (p,, . . ., Py) be m independent scalar
parameters of orbital motion; let Xo(t) be the state on a reference
orbit, and let the equations relating p to the state be linearized
sbout the reference orbit

op = A(t)eT(t) + B(t)ov(t)

Then (i) a linear impulsive guidance law satisfying the constraints
Op = O exists 1f and only if

rank B(t) = m < 3

(ii) If a guidance law exists, then the guidance law matrix which
specifies the minimum velocity correction is

3The pseudo-inverse is a generalization to arbitrary matrices of the
inverse of nonsingular square matrices. References 7 and 8 may be consulted
and some pertinent examples of pseudo-inverses are given in the next section
of this paper. The pseudo-inverse, B+, of B is the unique solution of the
four equations:

BB'B = B, BB* = (8BH)T
B*BET = B*, B'B = (8*B)T

Note that if B 1is a nonsingular square matrix, then BT is the ordinary
inverse, B7L.

Il
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BH(6)a(%)

BH(+)B(t)

G1(t)

Go(t)

I

Theorem 6 will usually be easier to apply than theorem 4. It should be
noted that only the ém (scalar) derivatives of the constraint parameters with
respect to the Cartesian coordinates of the state are required for the con-
struction of G(t). Theorem kL requires the completion of the m constraint
parameters to a set of six independent parameters and then defines G(t) from
6(6-m) derivatives of the state coordinates with respect to the new
parameters.

It may be noted that G(t) can be expressed in terms of the matrices
A(to)s B(tg) for some fixed time, to, and the transition matrix, A(t,tq) from
the following relations

T T
A(t) = A(to)As - B(to)As
T
B(t) = B(to)AL - A(to)Az
where A1, . . ., Ay are the submatrices of A(t,t,) as in equation (6).

Remarks on theorems L and 6.- Theorems 4 and 6 are necessarily equivalent;
it can be demonstrated independently that the existence conditions and guidance
law matrices of these two theorems are equivalent. The method is outlined
briefly below.

Suppose Py » - -5 Py are six independent scalar parameters of orbital
motion related to the state deviation by the linearized equations:

ep = A(t)ax(t)
(26)
sx(t) = B(t)op
where A, B are nonsingular 6 X 6 matrices and B = A™*
guidance constraints are

Suppose that the

8p; =0 J=1, ..., m<3
and paxrtition A, B as follows:
Ay A (m x 3) (mx3) |
e As A4 i (6-m x 3) (6-m x 3)_
Bi B (3 x m) (6-m x 3{W
0T Bs Bs (3 X m) (6-m x 3)]

Theorem 6 constructs the guidance law from A; and Ap, and theorem 4 gives
G(t) from Bs and By. Noting that AB = BA = Ig, we have the two relations
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0

AiBs + AsBs = 0 (m X 6-m) (272)

0 (3 x 3) (27p)

BiAp + BoAs
With these two relations it can be shown that (proof omitted) for m < 3:
rank (Ap) = m IFF rank (Bs) = 3

The left- and right-hand sides sbove are, respectively, the existence condi-
tions of theorems 6 and k4; hence, the two are equivalent.

Next, assume that the existence conditions are satisfied and let W De
the matrix whose columns are the three independent columns of Bs and V. the
corresponding columns of By. Further, let 7., Vﬁ be any remaining column
of Bz and its corresponding column from 3Ba. Then equation (27&) yields

-A2thy = (A2TAR)WWTE
= 28
-h2"8aT5 = (A2Fh2)7, (282)
Substituting (28a) into the second equation yields
[T 821075 -~ WF3] = 0 (28b)

From theorem 6, Gg(t) is the m-dimensional reflection-projection matrix pro-
Jjecting to the space orthogonal to the 3-m independent vectors, Vi - VW‘lfj.
From equation (28b) it readily follows that the result for Go(t) “is identical
in the two theorems. TFrom this result and equations Gﬁa) it follows immedi-
ately that the expressions for Gi(t) are also identical in the two theorems.

Examples

Some examples of guidance law matrices from the lunar and interplanetary
mission studies are given below. These will serve to illustrate the applica-
tions of theorems 4 and 6 and the properties of form for matrices of linear
impulsive guidance laws.

Example 1: Fixed time of arrival guidance (e.g., ref. 1).- The guidance
congtraints require an interception of the reference orbit at some fixed time,
tgp. The linearized relation between the state at two different times is given
by equation (1). With the transition matrix partitioned as in equation (6), the

position deviation at +tp is:

87 (ty) = Ay(tp,t)87(t) + Ax(ty,t)o7(t) (29)
The linearized guidance constraints are:

5p = 8F(ty) = O
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Theorem 6 can be applied directly to obtain:
(a) G(t) exists if and only if As(tp,t) is nonsingular®
(b) 1If G(t) exists, then -
Ga(t)

Gz(t)

it

"AEl(tF;t)Al(tF;t)

Il

-I

This is the principal exemple in the class for which S(t) is three-
dimensional. Other examples can be given by applying any three independent
scalar constraints to the vehicle motion.

A number of variable arrivel time guidance laws occur to illustrate the
class for which S(t) is four-dimensional. Some of these are based on the
principle of nulling only part of the miss (position deviation at arrival)
rather than using fixed-time-of-arrival guidance to correct the total miss
(e.g., refs. 2, 3, 4). 1If such a guidance law can be used, the fuel require-
ments of fixed-time-of -arrival guidance will usually be relieved, as in some
applications of reference 2 which have employed a single midcourse correction,
or in the similations of reference 3 where the downrange miss cannot be esti-
mated very well until late in the mission.

Example 2: TInterplanetary variable arrival time guidance (ref. 4).- The
guidance attempts to obtain a desired position relative to the target planet.
The reference orbit has the desired relative position, Ay, at the reference
arrival time tm. Let VR be the velocity of the vehicle relative to the
planet at +typ. Then the relative position of the wvehicle at times near tp
on any nearby orbit can be approximated by the (linearized) expression

Altp + 8t) = &y + 57(ty) + Vot (30)

This expression assumes that the relative velocity is approximately fixed on
all nearby orbits (acceleration of the vehicle and planet in the time interval
(tgp,ty + dt) has been neglected). The constraints are satisfied if 87 (tw)

1s chosen so that

Atp + dty) = &%

for some delay in the arrival time, dtp. For all orbits on which this 1s true,
equatbion (30) gives the relation

8T(tp) = -Vpdty (31a)

that is, the constraints are satisfied by all orbits for which ®T(tp) is
parallel to Vg. The converse is also true. Equivalently, the guidance seeks

“The matrix Ae(tF,t) is singular in Keplerian orbital motion when t
and +tp either are identical or correspond to points of the reference orbit
which differ in true anomaly by nx. Such instances can occur in interplane-
tary flights, as in the return legs of the orbits of reference 3.
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to cancel the lateral miss (position deviation at tp perpendicular to Vg),
but the downrange miss (along VR) can be arbitrary since it only determines
the delay in arrival time.

Let ¥V be a unit vector in the direction of v&; then the guidance con-
straints can be written as

8p = (I - ¥0)8F(ty) = O (31p)

Equation (29) gives the relation between the guidance constraints and the
state deviations:

(T - T0)oF(ty) = (T - 7)) [A(ty,t)8%(t) + Ao(tp,t)87(t)]
Theorem 6 can be applied directly to give:
(a) A guidance law exists IFF rank (I - vW@)Ax(tm,t) = 2

(b) If a guidance law exists, then (time arguments dropped):

Gy(t) = -[(T - W)A1 (T - 77 )As
Go(t) = -[(T - ¥)as] (T - ¥ )as

If Ao 18 nonsingular, then (a) is automatically satisfied and the expressions
in (b) can be reduced as follows:

[(T - 7)az]" = (1 - w)ast

where .
ATV

| 2|
(1 - wl)as>(x - F) = (I - wrl)as®
from which the guidance law matrix becomes

G1(t) = =(T - %)z (ty,t)A1(tp,t) (32)

-T + WL

Go(t)

This result is similar to the fixed-arrival-time guidance except that the w
component of velocity i1s unchanged since it affects only terminal position
deviations along Vg. Equations (32) preserve the downrange miss due to
injection errors, and if this miss is large, there will be large deviations
from the reference orbit near the end of the mission.
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Example 3: Terminal phase pericenter guidance (ref. 3)5.- Pericenter
guidance was derived for use in the terminal phase of interplanetary missions.
It operates within the sphere of influence of the target planet and seeks to
obtain the reference value of the radius of pericenter and to place the peri-
center position in the plane of the reference orbit relative to the target
planet. Reference 3 derives the guidance law matrix from derivatives of the
two-body equations of motion. An alternate formulation is given here i.n terms
of the transition matrix.

The linearized equations governing the pericenter position are of the form
8Tp = R(t)8T(t) + V(t)ov(t) (33)

where (8¥7,5¥) is the state deviation from the reference orbit relative to the
target planet. In particular, if + is the reference arrival time corre-
sponding to pericenter on the reference orbit, then write equation (33) as:

8Fp = RodT(tp) + VodV(ty) (34)
where R,, Vo relate be to deviations from the reference orbit at tp.

The matrices Ry, Vo are readily determined as follows. Define the
orthonormal vectors U, ¥V, W which lie, respectively, along the reference
pericenter position, along the velocity vector at pericenter, and along the
normal to reference orbital plane. The time +tp corresponds to pericenter on
the reference orbit so that the reference state at tp can be written

F(tF) =

V(tp)

Next, consider, successively, small deviations SE(tF), 6V(tF) along the three
directions U, V, i and obtain the corresponding deviations in pericenter
position, 6??. Summing these deviations (algebra omitted), obtain

I
J
o
]|

i
%ﬁ

T
— J 1 - Po .
orp = (uU.T + nnT)Sr(tF) - vggvuf> Sv(tF) (35)
The guidance constraints require that the pericenter position lie in the
reference orbital plane, or
Moo
n drp = 0

and that the value of the radius of pericenter be the same as the reference
value;

|7(tp) + o7p| - |x(tg)| =0

5The term, periapse guidance, used in refé}ence 3, is lexicographically
doubtful and has been changed to pericenter guidance in this paper.
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This can be linearized to the form:
L
v 6rp =0

Inserting these in equation (35), the linearized guidance constraints are:

=T =7
Yler, = M) oF(tg) = 0 (36)
=T AT

Equation (36) states that the constraints for pericenter guidance are
equivalent to cancelling out only the lateral miss at <Tp. These are exactly
the constraints for example 2, and the resulting guidance law should therefore
have the same form as equation (32).

Equation (29) may be substituted for &F(ty) in equation (36), and the
linearized equations for the constraint parameters become:

=T 5T
dry, = : [A1(tp,t)8T(t) + As(tp,t)dV(t)]

al Al

Theorem 6 can now be applied to obtain the guidance law matrix:
T
(a) A guidance law exists IFF rank T Ao(tp,t)| = 2

n

(b) If a guidance law exists, then (time arguments dropped),

Gi(t) = - Ao Ay
ﬁT =T
Go(t) = - p Ap o Ao

For this case Ao 1is generally nonsingular,® whence (a) is generally satisfied
and the expressions 1in (b) can be reduced as follows:

2T +
( T) Ap| = (T - wit)az*(wa)
n

SFor Keplerian motion, the orbit relative to the target planet is hyper-
bolic in which case Ae(tF,t) will be nonsingular except at t = tp.
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where -1
Aa

—l

(T - w)azt (ax <T> (1 - & )ast

From these, the guidance law matrix becomes, as in equations (32);

Ga(t)

Ga(t)

~(I - wt)azta,

o (37)

]

-1+

Example 4: Fixed-landing-site guidance (ref. 5).- This guidance law has
been gpplied in | studies of the return phase of the lunar mission. The primary
objective of guldance in this phase is to make a safe entry and, if possible,
to land at a fixed landing site. Fixed-time-of-arrival guidance had been used
in previous studies, with interception of the reference orbit at time tp
corresponding to vacuum perigee on the reference orbit. Although adeguate for
the range of initial errors studied in reference 5, the FTA guidance law does
not explicitly recognize the objectives of the midcourse guidance and for com-
parison the fixed-landing-site guidance law was derived to satisfy the
constraints:

(a) Vacuum perigee altitude is fixed at the value of the center of the
safe entry corridor.

(b) The vehicle lands at a geographically fixed landing site without
crossrange maneuvering during the entry flight.

The second constraint is adopted in view of the limited crossrange masneuvering
capability of Apollo-class vehicles, compared to the downrange maneuver
capability.

The guidance law matrix will be determined by defining the satisfactory
deviation states at any time t and applying theorem 1. The state deviations
at t are defined by their corresponding deviations at +tp from equation (l):

8x(t) = A(t,ty)ox(ty) (1)

The deviations at +tp, in turn, can be defined by deviations in vacuum perigee
position, velocity, and time; that is,

Srp

sx(ty) = H| 5%, (38)

Stp,



To a first-order approximation

Bty = tp - tp

R
[1H

r(tr) = F(tp) + (tp - tp)V(tp) = ¥p_ + 8Fp - Vpydtp

Ttp)

R
i

— - — = SR

V(tp) + (tp - t,)V(ty) = Vo + &V + 5 T Bty
o)

where the subscript, o, refers to values on the reference orbit. From these

results, we have the 6 X 7 matrix:

(39)
o=
rpg rpo

The previous equations have transferred the problem of defining the satis-
factory deviation states, SXS(t), into one of finding perigee deviations, S?b,
&V,.,, 0t.,, which satisfy the constraints. These are obtained as follows: Let

T, V, o be unit vectors in the direction of vacuum perigee position, velocity,
and the normal to the orbital plane. Then

T T U

d (10s)
Vp = Vpv

2]
Lo}
I

and U, V, n can be given in terms of the landing site location at the time of
landing, and entry flight-path parameters by the following transformations to
inertial coordinates:

cocs @ sin o 0]

(wwn) = (UpEN) | -sin @ sin Agr  cos @ sin Ayr -cos App (Lob)
-sin @ cos Ay cOs @ cos Apy  -sin Agp
cos Dy, sin RAp  -sin RAp -sin Dr, sin RAp

(arEN) = (IJK) | cos D, cos RA;, cos Ry, -sin Dy, sin RAf, (koc)
sin Dy, 0 cos Dy,
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The parameters are illustrated in _
sketch (a). The vectors Ty, E, N are
the directions of the landing site and
local Bast and North at the landing
site; their components in the inertial
frame are given by equation (4Oc) and
are functions of the landing site lati-
tude, Dy, and right ascension, RAy(ty,).
For a geographically fixed landing site,
the second transformation is a function
of the time of landing only:

Celestial north

RAp(tr) = RAp(tr.) + alty - tr)

(hoq)

Sketch (a).- Geometric parameters where o 1s the earth's rotation rate.

for fixed-landing site guidance

The remaining parameters, ¢, Ayr are the total range angle from vacuum
perigee to landing, and the azimuth of the plane of the entry flight at the
landing site latitude. Note that in the first transformation the entry Tlight
motion is assumed to take place in a single inertial plane and, therefore,
already contains the constraint that no crossrange maneuvering occurs during
the entry flight.

For all entry flights with entry speed near the escape speed, an approxi-
mate linear relation between flight time and total range angle is available:

ty, - tp = Ba® + B2 (40e)

where B1, Pz are constants (ref. 5).

The satisfactory perigee conditions are found from eguations (40a) to
(hOe) by imposing the constraints that o is fixed at the value corresponding
to the center of the entry corridor, rp,, and that D, RAL(tL) correspond to
the desired landing site. The remaining parameters which may be varied arbi-
trarily to define the satisfactory perigee conditions are then Vyp, ¢, Ayl,
and ty,. Assuming small deviations in these parameters about their wvalues on
the reference orbit, we obtaln the satisfactory deviations in vacuum perigee
conditions from the appropriate derivatives of equations (hOa) to (MOe)

v
- P
6I'p
- B
8V = ¥y ) (h1a)
sty Az,
s
6'13]'_,
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. Where

o -rpov Tbo sin Qo arponE
Vp =| T Vp T Vp cos gof  aVp Kx¥ (L41v)
O _Bl 6] 1

where U, V, n are now unit wvectors taken on the reference orbit and the
symbol, x, indicates the vector cross product. Finally, equations (l), (32),
(Ml) are combined to give the satisfactory deviation states at +t:

Bv?

exs(t) = A(t,tp)v | °F (12)
Bty

where

v = Bl

Since A(t,tF) is a nonsingular transformation of the state space, then the
dimension of S(t) is the same as the rank of V¥, which can be shown to be

four. Hence, the four-columns of A(t,tp)¥ form a basis of S(t) and theo-
rem 1 can be applied directly. Partition A(t,tgp) as in equation (6); then

(1) @(t) exists IFF rank [A; As]V = 3 (43a)

Assuming that (h3a) is satisfied, let W Dbe any three independent columns of
[Ay Ao]V and V the corresponding columns of [Ag A ly. Further, let T4, Vi
be the remaining column of these two matrices, respectively. Then

(11) Gi(t) = -Go(t)VW ™t

Go(t) = - + Tat (430)

I

- R . . . — -1_
where U 1s a unit vector in the direction of vas - VW Ta4.

These results are not in a satisfactory final form, but further discussion
is beyond the scope of this paper.

The guidance laws in the class for which S(t) is five-dimensional result
from imposing a single scalar constraint on the vehicle motion. For instance,
in example 3, if the constraint is reduced to obtaining the desired pericenter
radius without any adjustment of the plane of motion, the linearized guidance
constraints become

o = TeFp = UlA;(typ,t)oT(t) + T As(ty,t)o7(t)
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for which the guidance law matrix becomes (algebra omitted):

—."T
Ay(twm,t
Gy(t) = - 50 Ay ( 135 )
|2-TT]
Go(t) = -55¢
where _
_ A2T(tp,t)T
S = ————
| aoTw|

After the first correction, the corrected orbit tends to diverge from the
reference orbit because the deviation of the actual orbital plane from the
reference plane of motion is preserved; consequently, the linearized equation
for ﬁTS?p becomes a poor approximation later in the flight. This difficulty
is relleved when equations(S?) define the guidance law matrix.

CONCIUDING REMARKS

This paper has investigated relationships among some of the basic notions
of the linearized theory of midcourse guidance in space missions; the satis-
factory orbits, linear impulsive guidance laws, and gulidance constraints.

A satisfactory orbit is one that satisfies the missicn constraints on
orbital motion; the set of such orbits is fixed for a mission, and the corres-
ponding set of states at any time, t, is a subset of the state space called the
satisfactory states. The guidance process is one of correcting the current
state of the wvehicle to a satisfactory state by means of a change of velocity.

The guidance law is the rule that specifies the wvelocity correction, Ax,
that should be made in order to correct the vehicle state, X(t), to a satis-
factory state:

ox = G(X(t))

A simple class of such laws," termed linear impulsive guidance laws, was studied
in this paper. These guidance laws yield velocity corrections that are linear
functions of the state deviation from the reference state, and are defined.on
the entire state space:

Ax = G(t)x(t)

where G(t) is the matrix of the guidance law. In the study of midcourse
guidance in space missions linear impulsive guidance laws arise when the mis-
sion imposes three or fewer constraints on the vehicle orbital motion, and when
the assumptions are made that velocity corrections are impulsive and the orbits
of interest are sufficiently close to a reference satisfactory orbit to allow
the equations of motion to be linearized about the reference orbit.
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It was demonstrated that linear impulsive guidance laws can be defined
from the satisfactory states (the converse is also true). Linear impulsive
guidance laws occur whenever s(t) is a three-, four-, five-, or, trivially,
six-dimensional linear vector subspace of the deviation state space such that
there is at least one satisfactory state corresponding to every position devia-
tion (theorem 2). In this case the guidance law matrix can be given from any
set of basis elements of the satisfactory states (theorem 1). The guidance law
matrix corresponding to a given set of satisfactory states is unique when S(t)
is three-dimensional, and otherwise becomes unique if the minimum velocity cor-
rection is specified. Theorem 1 shows that the guidance law matrix has several
properties of form which depend only on the dimension of S(t); if 8(t) is
n-dimensional, then Gg(t) is & reflection-projection matrix projecting to a
(6-n)-dimensional space which is also the range space of G1(t).

Some time-dependent properties of the guidance law matrix were considered.
Since the set of satisfactory orbits is fixed, the satisfactory states at two
different times in a mission are related by a nonsingular transformation
(eq. (5)). Consequently, S(t) has a time invariant dimension, and for those
times at which the guidance law exists, the dimension dependent properties of
form of G(t) are also invariant. A propagation formula relating the guidance
law matrix at two different times in the mission was also derived.

It was demonstrated that the satisfactory states and the guidance law can
be defined from the guidance constraints. In practice, a mission requires that
the vehicle motion satisfy various constraints. If these are expressed in
terms of independent orbital parameters

p.=G,J-) j:l)...,m

where a3 are the specified values and m 1is the number of constraints, then
the satisfactory orbits are defined as all orbits that satisfy these con-
straints. If {p1, . . ., Py} are completed to a set of six independent
orbital parameters and a satisfactory reference orbit is selected, then a basis
of the satisfactory states, S(t), is given by the derivatives:

dx(t)
SPJ

;j=m+l,---,6

where the derivatives are evalugted on the reference orbit. Thus, theorem 1
can be applied to define the existence conditions and the guidance law matrix
in terms of this basis (theorem ).

Finally, an alternate construction of the guidance law matrix is given
from the constraints by considering the conditions for which a velocity correc-
tion will satisfy the constraints. If the constraint parameters are expressed
in terms of m independent orbital parameters and a reference orbit is
selected, then for all orbits near the reference orbit, the deviations of the
constraint parameters are related to the state deviations by the (Linearized)
equation:

op = A(t)3T(t) + B(t)sv(t)
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A correction is said to exist if for every state, ®x, a veloclty change, AV,
can be found to satisfy the constraint equations: )

0 = A(t)5T + B(t) (5T + AF)

These are m-inhomogeneous linear equations for which an existence condition
(theorem 5) and the general solution for AF (eq. (24)) are readily given. A
linear impulsive guidance law matrix can then be given from the general solu-
tion (theorem 6).

The constructions of theorems 4 and 6 are different; theorem 4 gives G(t)

in terms of the derivatives, 0x(t)/dp., while theorem 6 uses the derivatives
Opy/0x and theorem 6 will usually be“easier to apply in specific midcourse
guidance problems. Nevertheless, the two results are equivalent.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Dec. 8, 1965
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APPENDIX A
PROOF OF THEOREM 1

The results gquoted in theorem 1 are included in the proof of the following
abbreviated statement.

Theorem: If S(t) is an n-dimensional subspace of N(t),

n=3, 4 5, 6, and sy = (T1,v1), . . ., sy = (T,Vy) are n
independent states in S(t) such that T, To, Ts are independent,
then a linear impulsive guidance law exists.

By hypothesis, S(t) can be a three-, four-, five-, or, trivially, six-
dimensional subspace of N(t) and these cases will be treated separately
below.

Case a: n =3
Let s1, 82, s3 be three independent states in s(t)
s1 = (¥1,71), sz = (T2,V2), sz = (T3,Va)

and assume T1, Yo, rs are independent vectors. Next, define W and V to be
3 X 3 matrices whose columns are Y;, Yo, rs and Vi, Ve, Vs, respectively; note
that W is nonsingular since its columns are independent.

Tet (6?,67) be any state deviation. To correct this state to a satis-
factory state first determine the satisfactory state (s)which has the position
deviation ©F; that is, determine all those states (97,8%¥y) that are linear
combingtions of the form

o N = a181 + UpSs + a3Sa (A1)
&Vg

where the scalars a4 are chosen such that
dr = a1¥1 + asre + aars = Wi as (A2)

The constants of conmbination have a unique solution which is obtained by
inverting equation (A2):

a1

(07=) = W_la-f

a3
The corresponding velocity deviation on the satisfactory orbit which passes
through % is, from equation (Al):
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5;5 = &lVi + GZVE + Q3V5
or (a3)
57y = VW 1oF

The vector, ®vg, depends uniquely on 8T, and there is exactly one satisfactory
state (6?,6?5) corresponding to each position deviation, dr. The union of
all such states is:

s(t) = {x(t) = (87,VW 'oF); &7 arbitrary} (ak)

the velocity change required to correct the arbitrary state (6?,8?) to the
satisfactory state (B7,5%g) 1s then

AV = BV, - &Y = VW 8T - &V (A5)

and the guidance law matrix can now be written as:

G1(t)

Go(t)

e (86)
-I

The guidance law obtained specifies a change of state to a satisfactory state
for every arbitrary state in N(t) by means of a unique impulsive velocity
correction linearly related to the original state. ZFurther, no correction is
made if the original state is satisfactory. In short, equation (A5) satisfies
the definition of a linear impulsive guidance law.

Case b: n =14

Let s1, Sz, S3, S4 Dbe any basis of S(t) and assume that Ti, Tz, Ts
are independent. Define the 3 X 3 matrices, V, W as above.

Next, let (8T,5V) be any state in N(t) and determine all satisfactory
states corresponding to 8&F; that is, determine all linear combinations

5T
= 3157 + A28z + A3Ss3 + AgS4 (AY)
OVg
such that
dr = @lfl + Ggfé + &Sfé + m4f;
or
Qa1
8T = Wl ag | + a,T, (A8)
")
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The solution of (A8) is not unique, but o1, a2, az can be given in terms of
the arbitrary parameter, a,, by inverting equation (a8):

S0

oz | = wolst - a4W'l?;; o  arbitrary

Q3

The corresponding velocity deviations on the satisfactory orbits which pass
through ©T are, from equation (A7):

5;7'—8 = q1Vy + CLng + Q,3V3 + 00474
or
— —_ — -1
= Y-t _ . .
Vg = W BT + a,[V, - VW T,]; a, arbitrary

The vector in brackets cannot be zero, since otherwise we obtain the conse-
quence that s, 1is a linear combination of si1, 82, Ss3 in contradiction to
the hypothesis that s3, . . ., 84 were independent.! Since the vector in
brackets is nonzero, it may be replaced by a unit vector in the same direction
and, since a, is arbitrary, 3V can now be rewritten as

&Vs = VW 18T + oll; o arbitrary (49)

where

= (v, -wWwir)/|v, - Wi,

In this case there are arbitrarily many satisfactory states corresponding to
each position deviation, &r. The union of all such states is then

s(t) = {x(t) = (67, W T + o); 5%, o arbitrary} (A10)

The velocity change required to correct the state (6?,67) to a satisfactory
state is:

AV = dVg - BV = VW IST + o - oV o arbitrary

Since o 1s arbitrary in this result, the velocity correction is not uniquely
gpecified ag a function of the state alone, and a condition that properly spec-
ifies the value of o must be adopted. In equation (A9) o is arbitrary

and, therefore, a satisfactory state is achieved independent of the

u-component of the final wvelocity. Equivalently, the mission constraints are
independent of the wvelocity deviation in the direction u. Consequently, it is

1If ¥4 - VWW™'T, is zero, then the state s4 can be given as

54 = @3 = <§> Wi,

That is, s, would be a linear combination of 83, s2, 83 with the three
elements of the wvector W'lfé as the constants of combination.
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pointless to make any change in the u-component of velocity deviation. Assum-
ing that no such change occurs, a must satisfy the condition®
0 = BAT

from which

o = UL -VW8T + B7)
This gives the result

AT = (I - @l )vWlsT - (I - 5al)s+¥ (a11)

Equation (All) satisfies the definition of a linear impulsive guidance law.
Its corresponding matrix is then:

G1(t) = (T ~ wr)vwt

T+ T (a12)

i

Go(t)

7] =1

I

Case ¢: n =5
The proof of the theorem will not be carried out for this case. The steps
require only a minor extension of the proof for Case b above.
Case d: n =6

This is the trivial case in which every state in N(t) is satisfactory
and no correction is ever made; that is,

G1=G2=O

2The condition adopted is equivalent to choosing « such that the magni-
tude of the velocity correction is minimized. This condition i1s not required
by the definition of the guidance law, but is included as a possibility. The
most general choice of o which satisfies the definition is the form:

— - T -1 = —
a= (T +7p) (-vW'sT + 57)

where T 1is any vector perpendicular to UW. The corresponding guidance law
matrix will then be
G1(t) = -Go(t)VW™*

Go(t)

I

I

T
-I + a(@ + P)

This general result points out that the guidance law corresponding to some par-
ticular four-dimensional set of satisfactory states S(t) is not unique until
a condition on o 1is adopted. However, the general result is not of any sus-
pected practical interest and will not be investigated further.
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In summery, theorem 1 of the text is now proved. Equations (A6) and (A12)
together with the analogous result for Case c give the expressions for the
guidance law matrix quoted in the text.
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ATPENDIX B
UNIQUENESS OF THE GUIDANCE LAW MATRIX

It 1s easily shown that the guidance law matrix for the minimum correction
to a given set of satisfactory states is unique. Let S(t) be a given set of
satisfactory states and assume that the guidance law exists at +t. ILet G(t),
G¥(t) be two guidance law matrices which satisfy the definition in the first
section and correct any state in N(t) +o a state in the given set S(t).
Since (I + G¥)x(t) 1is a satisfactory state for any =x(t), we have

a(T + %)

|}

0]

I

G*(1L +a@*) =0

or

i

G1 = -GG *

Go = -Golso* (B1)

It

G *

I

-Go¥0*

The set S(t) may be three-, four-, or five-dimensional, and the remainder of
the proof is carried out according to the dimension of s(t).

(a) aim [s(t)] = 3. Theorem 1 gives Gz, Go*¥ uniquely for this case,

as
Go = Go* = -I
Then, from the first of equations (B1)
G = G.*
that is, G = G*, and the guidance law matrix is unique.
(b) aim [S(t)] = 4. Assuming the condition that the guidance law mini-

mizes the magnitude of the velocity correction, theorem 1 gives Gz, G2*¥ in
the form:

Go = -T + @as
G2* = I + ﬁ*ﬁ*T
lal = [a¥] =1

Inserting these forms in the second equation of (B1), obtain

0=[o*- (x - aHa*T
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which, since wu, u* are unit vectors, requires that

¥ = 0

In either case,
G = Go*

and from the first and third equations of (B1)
Gy = -Go2G* = -G2¥Gy* = Gi*
that is, G = G¥, and the guidance law matrix is unique.

(¢) aim [8(t)] = 5. If the guidance law is assumed to minimize the
magnitude of the wvelocity correction, theorem 1 gives Gz, G2¥ in the
form

Go = -1 + ﬁ.lﬁlT + ﬁgﬁgT

Go* = =T + G %0 %Y + ag*ip*T

1

where Ui,7p and TU1%,02% are orthonormal pairs of vectors. It is convenient
to replace these with the equivalent forms:

G2 = -ﬁsﬁgT

Go* = ~Ug*igh®

]

where 1U,Uz,Ug and Ui¥,Us%,0s% are orthonormal triads of vectors. Inserting
these forms in the second of equations (Bl), obtain

0 = Galis’ - (ds. . Ug*)ds*T]

Following the remaining steps of Case b gbove, obtain

ﬁs* = i‘ﬁs
Go* = Gz
Gy* = Gz

that is, G = G¥ and the guidance law matrix is unique.



APPENDIX C

PROPERTIES OF THE MATRIX B

B = Aa(t,t5) - Ba(t,to)BL (o)A (t,t0) (c1)

The matrix, Bl(t,to), has been assumed nonsingular and the matrices of
equation (Cl) are defined by equations (6) and (8) of the text. The time
arguments are dropped in the following.

B is a Nonsingular Mstrix
Consider the four independent states given by the columns of

I o (c2)

<l

G1(to)
where U is any nonzero vector, I is the 3 X 3 identity matrix, and Gl(to)
is the appropriate submatrix from the guidance law matrix at t5. The state
transition matrix, A(t,to), is never singular, and, hence, the four columns of

Aq Ao I [} By AU
| = ~ (c3)
Az Ag)(G2(to) T Bo  AaT

mist also be independent. Suppose, next, that Bu = 0; that is, from equa-
tion (CL):

AsT = BoBiYAST
Note the identity, I = ByBI, from which:
AST = BiB1 AST

Combining these last two equations yields:

()@
1, Bo

that is, if Bu = O, then the state <ﬁi§> can be given as a linear combination

B
of the columns of <é:> where the constants of combination are the three

components of the vector BI'AsW. However, this contradicts the fact that the
four columns in equation (CG3) are independent; consequently, BI cannot be
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zero. Since this is true for every nonzero vector, @, it follows that B is
nonsingular.
Reduction of B When As is Nonsingular
The definition of Bi in equations (8) gives
I = ByBi" = (Ay + AsG1)BIl
which can be rearranged to give
I - AG4BI - = AjBTY

-1
Assuming Az 1is nonsingular, pre- and post-multiply by As™ and As, respec-
tively, and obtain

T - G1BIYAs = ASTABI A, (ck)

Next, rearrange equation (C1) after introducing the definition of Bs from
equations (8)

B = A4[T - G1BI%As] - AgBI Az
The result in equation (CL) is introduced:
- -1
B = [A4A5MA; - AglB1i Ap (c5)

—1.T
The expression in brackets in equation (C5) is [Az']", which can be proved
from the inversion property of the transition matrix® (ref. 1)

A1 o AlT AT

ast AT

When the identity I = AA"Y  is carried out in terms of its 3 X 3 submatrices,
two of the four equations obtained are

I

pohy T - agast = 0

I

i

AehsT - AgAST

From the first of these it follows that AélAl is a gsymmetric matrix. Noting
this fact in a rearrangement of the second equation then yields the indicated
expression for (Aél)T. Thus, when Az 1is nonsingular, B reduces to

B = (A2%) BIe

IThis inversion property holds for all canonical transformations.
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